An Experimental Comparison of Explicit Semantic Analysis Implementations for Cross-Language Retrieval

نویسندگان

  • Philipp Sorg
  • Philipp Cimiano
چکیده

Explicit Semantic Analysis (ESA) has been recently proposed as an approach to computing semantic relatedness between words (and indirectly also between texts) and has thus a natural application in information retrieval, showing the potential to alleviate the vocabulary mismatch problem inherent in standard Bag-of-Word models. The ESA model has been also recently extended to cross-lingual retrieval settings, which can be considered as an extreme case of the vocabulary mismatch problem. The ESA approach actually represents a class of approaches and allows for various instantiations. As our first contribution, we generalize ESA in order to clearly show the degrees of freedom it provides. Second, we propose some variants of ESA along different dimensions, testing their impact on performance on a cross-lingual mate retrieval task on two datasets (JRC-ACQUIS and Multext). Our results are interesting as a systematic investigation has been missing so far and the variations between different basic design choices are significant. We also show that the settings adopted in the original ESA implementation are reasonably good, which to our knowledge has not been demonstrated so far, but can still be significantly improved by tuning the right parameters (yielding a relative improvement on a cross-lingual mate retrieval task of between 62% (Multext) and 237% (JRC-ACQUIS) with respect to the original ESA model).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cross-language Information Retrieval with Explicit Semantic Analysis

We have participated on the monolingual and bilingual CLEF Ad-Hoc Retrieval Tasks, using a novel extension of the by now well-known Explicit Semantic Analysis (ESA) approach. We call this extension Cross-Language Explicit Semantic Analysis (CL-ESA) as it allows to apply ESA in a cross-lingual information retrieval setting. In essence, ESA represents documents as vectors in the space of Wikipedi...

متن کامل

Cross-lingual Information Retrieval based on Multiple Indexes

In this paper we present the technical details of the retrieval system with which we participated at the CLEF09 Ad-hoc TEL task. We present a retrieval approach based on multiple indexes for different languages which is combined with a conceptbased retrieval approach based on Explicit Semantic Analysis. In order to create the language-specific indices for each language, a language detection app...

متن کامل

Public Transport Ontology for Passenger Information Retrieval

Passenger information aims at improving the user-friendliness of public transport systems while influencing passenger route choices to satisfy transit user’s travel requirements. The integration of transit information from multiple agencies is a major challenge in implementation of multi-modal passenger information systems. The problem of information sharing is further compounded by the multi-l...

متن کامل

Combining Wikipedia-Based Concept Models for Cross-Language Retrieval

As a low-cost ressource that is up-to-date, Wikipedia recently gains attention as a means to provide cross-language brigding for information retrieval. Contradictory to a previous study, we show that standard Latent Dirichlet Allocation (LDA) can extract cross-language information that is valuable for IR by simply normalizing the training data. Furthermore, we show that LDA and Explicit Semanti...

متن کامل

Explicit vs. Latent Concept Models for Cross-Language Information Retrieval

The field of information retrieval and text manipulation (classification, clustering) still strives for models allowing semantic information to be folded in to improve performance with respect to standard bag-of-word based models. Many approaches aim at a concept-based retrieval, but differ in the nature of the concepts, which range from linguistic concepts as defined in lexical resources such ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009